Self-Driving Software: Why We Need E Pluribus Unum

Today, numerous large and small companies around the world are working diligently on perfecting their company’s self-driving software. All the large traditional automobile companies are included as well as large technology firms such as Google, Intel and Microsoft, and even Uber. These companies are working in true twentieth-century capitalist fashion: they’re doing it all independently and secretly. This approach leads to sub-optimal technology and foreseeable tragedies.

Self-Driving Vehicles Use Artificial Intelligence (AI)

Programming a self-driving vehicle (SDV) by traditional software-development methods is so fraught with complexity that no one, to my knowledge, is attempting. So scrap that idea. Instead, developers have flocked to artificial intelligence, a red-hot technology idea built on rather old ideas about neural networks.

There’s a lot to AI technology beyond the scope of this blog. A quick Internet search will get you started on a deep dive. For today, let’s sketch a common approach to AI application development:

  • First, an AI rules-based model is fed real-world scenarios, rules, and practical knowledge. For example, “turning left into oncoming traffic (in the USA but not the UK) is illegal and hazardous and will likely result in a crash. Don’t do that.” This first phase is the AI Learning Phase.
  • Second, the neural network created in the learning phase is executed in a vehicle, often on a specialized chip, graphics processing unit (GPU) or multi-processor. This is the Execution Phase.
  • Third, the execution unit records real-world observations while driving, eventually feeding them back into the learning model.

The Problem of Many

Here’s the rub. Every SDV developer is on its own, creating a proprietary AI model with its own set of learning criteria. Each AI model is only as good as the data fed into its learning engine.

No single company is likely to encounter or imagine all of the third standard-deviation, Black Swan events that can and will lead to vehicle tragedies and loss of life. Why should Tesla and the state of Florida be the only beneficiaries of the lessons from a particular fatal crash? The industry should learn from the experience too. That’s how society progresses.

Cue the class-action trial lawyers.

E Pluribus Unum

E Pluribus Unum is Latin for “out of many, one”. (Yes, it’s the motto of the United States). My proposal is simple:

  • The federal government should insist that all self-driving vehicles use an AI execution unit that is trained in its learning phase with an open-source database of events, scenarios, and real-world feedback. Out of many AI training models, one model.
  • The Feds preempt state regulation of core AI development and operation
  • Vehicles that use the federalized learning database for training receive limited class-action immunity, just like we now do with immunization drugs.
  • The Feds charge fees to the auto industry that cover the costs of the program.

Conclusion

From a social standpoint, there’s no good reason for wild-west capitalism over proprietary AI learning engines that lead to avoidable crashes and accidents. With one, common AI learning database, all SDVs will get smarter, faster because they are benefiting from the collective experience of the entire industry. By allowing and encouraging innovation in AI execution engines, the industry will focus on areas that impact better-faster-cheaper-smaller products and not in avoiding human-risk situations. Performance benchmarks are a well-understood concept.

Philosophically, I don’t turn first to government regulation. But air traffic control, railroads, and numerous aspects of medical areas are regulated without controversy. Vehicle AI is ripe for regulation before production vehicles are produced by the millions over the next decade.

I am writing this blog because I don’t see the subject being discussed. It ought to be.

Comments and feedback are welcome. See my feed on Twitter @peterskastner.

Advertisements

Buying a PC for Your Third-World Adventure

A reader of this blog asked “What PC should I buy that can survive the erratic electricity of a third-world residency?” The answer, of course, is “It depends how much you want to spend.” But having reliable computing in a less-developed setting need not break the bank.

Assumptions

You’re an average, modern computer user with professional (i.e., office), social, and personal computing needs preparing to reside outside a first-world power grid. You could be in the mountains of Columbia or Colorado, or, like me, at the end of a one-kilometer driveway. You need to be able to use your PC at any time, but not necessarily all the time. You have a budget.

My previous stories on this subject are here. Your problem is spotty power that can come and go at any moment, day or night, and be off for hours. Your collateral problem is poor power with spikes, low and high voltage, surges, and intermittent on/off cycles. These can and will destroy the unprotected PC power supply in short order.

Strategy

The strategy is to put as much inexpensive stored electricity (i.e., batteries) in front of the computer’s power supply as practical. Duh! The easiest implementation is to use a laptop, which comes with a built-in battery. Modern laptops have hours of self-contained power while you wait for the power grid, backup generator, or tomorrow’s sun to renew your power supply.

Still easy but more expensive choices are a desktop all-in-one (such as an Apple iMac) or a regular desktop. In both the desktop cases cases, you’ll want an uninterruptible power supply (UPS) which stores AC grid power in a battery and delivers it to your electronic devices.

With those assumptions and strategy in mind, here is a prioritized list of what to buy and why to buy it:

The Basics

  • A laptop. Commercial grade (e.g., Dell XPS) has higher build quality than consumer grade (e.g., Dell Inspiron). You get what you pay for. Consider: 17″ screen-size as desktop replacement; SSD for reliability and speed. Your choice: Windows, Mac, even Chromebook.
  • A high-quality surge protector to filter as much electrical grief as possible. Mandatory unless you use a UPS.
  • A bigger and/or backup laptop battery. Greater off-grid time. More efficient than a UPS. Lowest cost when bought bundled with a new laptop.

The Upgrades

  • A powerful UPS, where power is measured in volt-amps. Over 1,000VA is better. Below 500VA is probably pointless with a laptop. The UPS has receptacles for other electrical necessities, so it becomes your electrical hub. Also, all UPS systems have power quality circuitry so your PC will always get clean power. Also, PC applications and a USB connection to the UPS can automatically and safely shut any PC down before the UPS itself exhausts its batteries.
  • A portable hard drive storage device to back up your PC. If this were me, it would rank in the Basics as a “must have”. The portable hard drives require no electrical power beyond a USB cable. With electricity (from your UPS), there are faster/greater capacity options.
  • A USB 3.0 Hub for greater I/O connectivity. Your laptop or all-in-one will never have enough USB ports for the printers, backup storage, Bluetooth speakers, and mobile devices that need charging. Your choices are four or seven ports. Go with the powered seven-port hub. After all, everyone in your house (office) will want to leech off your clean power. Plan accordingly.

The Options

Here’s where the budget goes out the window, but your level of electricity paranoia is nobody else’s business:

  • A secondary monitor scales your laptop’s screen to desktop size or becomes a second screen with more real estate.
  • Backup generator sized to your home electricity load. Best purchased locally as you will require service eventually. Requires (clean) gasoline.
  • Solar power generator requires solar panels, an AC inverter, and distribution hub. It can have its own battery for storage or use the UPS already in our specs. The money problem is a 300-400 watt solar installation can easily cost as much or more than our laptop computing device.
  • The ultimate upgrade for this scenario is a Ford C-Max Energi plug-in hybrid car with internal 7.4 kWh batteries, 2 AC power outlets, USB charging, and 12-volt power. You can also drive it. $31,770 and up.

Is a Tablet an Alternative?

A tablet or a laptop/tablet (i.e., a two-in-one) is worth considering. Portable, mobile, self-contained cellular network option. Some have a desktop operating system. The keyboard and mouse can use easily rechargeable AA batteries. Device operating life often exceeds eight hours. Rechargeable from a small solar panel. Connects to Bluetooth peripherals and to a video monitor/TV via an HDMI cable.

Minimalist computing dramatically simplifies backup power requirements.

Consolidated electronics such as a tablet connected to the LCD monitor also used as a TV makes planning easier and redundancy less necessary.

The Network

Getting on the Internet has its own set of problems and costs. You’ll need local knowledge to make cost-effective decisions.

Assuming a controllable data budget, the easiest Internet on-ramp is to use your smartphone as a hotspot and connect your laptop via Bluetooth. You won’t find unlimited data plans in the third world, so this approach needs careful usage-based planning.

A conventional desktop or laptop setup will require a network access device(s) to the cable, wireless broadband, or satellite network. Plan to power-protect these devices too by plugging them into your UPS. However, that limits PC placement to being close to the network access point.

Follow @PeterSKastner on Twitter

Note: the products linked in this blog post are not endorsed by the author. The author has no financial ties to any product mentioned in this blog post.

 

Buying a PC Online: a 2015 Saga of Customer-Service Inefficiency

In this open letter to Michael Dell, CEO at Dell.com, we relate the saga of a friend I’ll call Russ and his journey to buying a replacement PC online.

Plan A: Lenovo Chokes
Russ had an old, Lenovo one-core AMD workhorse desktop upgraded to Windows 7 awhile back. The box got slower than molasses. After all the usual speed-up remedies failed, Russ decided to buy a new desktop. We consulted as I do for (too) many friends and decided on a modest machine with a solid-state disk. Russ went online and configured-to-order in early November. Problem solved ….

But not quite. Lenovo quoted a delivery date, and when December rolled around, Russ queried when was his new PC going to be built and shipped. The answer was “We don’t know, but hold tight.” Russ replied, “Not good. Cancel the unfulfilled order.” Lenovo said, and I paraphrase, “You can’t cancel the order because we have released it to our manufacturing supply chain in China. It will arrive when it is built and shipped.” Russ called American Express and put the charge on indefinite hold in case it actually arrives some day.

Moral: 1. Don’t take an order you cannot fulfill. 2. Don’t leave a customer hanging.

Plan B: Dell Gets to Bat
With a little coaching, Russ found what he wanted at Dell.com: an Inspiron desktop without an SSD but with a decent Intel “Haswell” Core i3 processor, 4GB of memory, and a 1TB hard drive running Windows 10. Price was US$449 with free shipping. The clincher was same-day shipping.

The Unboxing: a Moment of Silence and Sadness
The new PC arrived in four days. I came over Sunday morning with assorted tech bits so we could hook up the new Inspiron and to run Microsoft’s sweet Windows Migration Tool to get it into production. Popped open the chassis, added 4GB of memory, closed the chassis, connected the cables and hit the power-on switch.

Nothing happened. Nada. The PC would not power on in spite of trying different electrical sockets and AC cables. It was a 2015 PC Dead on Arrival.

We were sad but not completely surprised as these things happen — presumably very rarely because of the Dell costs to swap a DOA machine. So, we called Dell Tech Support to get started.

Tech Support: Call Triage
It took eleven minutes to wait on hold, enter the PC service tag, explain to the tech we had a DOA machine that we wanted to swap. The information requested included the service tag, serial number, name and address, and other bits of information — all of which is already stored in Dell’s order entry system but was nevertheless verified and keystroked again into the service system.

We made it through triage and onto tech support’s call resolution team.

Tech Support: Call Resolution Team
This call took eighteen minutes, with most of the time spent on hold at the end waiting to be transferred to Sales. The business-process problem with the call resolution phase is simple: the department is a separate information silo from call triage, and no call or problem data is shared.

Russ had to literally spell out the same answers to information questions including the service tag, serial number, order name and address, and other bits of information that had already been amassed at order-taking and call-triage. Besides boring the customer to tears, the process is a poor use of tech support labor.

Reassuring us that the four-day-old PC was still under warranty, call resolution rang off to run down the DOA return process. After seven minutes, we were told that Sales handled returns and “please hold while I transfer you to that department.”

Sales Support: Waiting for Godot
And we waited some more with occasional call-tree clicks that eventually ended with a recorded message saying “Sales is closed on Sundays, so call us during business hours tomorrow.”

Customer time to non-resolution of a DOA problem: more than 30 minutes. Russ was pissed. I went home to lunch.

Luncheon Epiphany
I often skim the Sunday newspaper advertising inserts to keep track of technology mainstream deals and product positioning. For example, Intel’s Broadwell and Skylake 14nm processors only recently started being featured in PCs at BestBuy, and are still not being advertised at Wal-Mart, Target, Staples, or OfficeMax.

That’s how I found the Staples ad for a Dell Inspiron 1300 desktop with a Intel “Haswell” Core i3 processor, 8GB of memory, and a 1TB hard drive running Windows 7 Pro. Price $300, marked down from $580, and $150 less than Dell.com’s almost identical DOA PC.

I telephoned Russ, he picked the PC up that afternoon, and the migration was well underway on Monday morning. The DOA machine goes back to the Dell factory tomorrow.

Dear Michael,
I silently applauded your taking Dell private because the mature PC industry in a slowing global economy does not need a quarterly spotlight on top of all its other challenges. I expected lots of value could be wrung out of the business with greater efficiencies and focus on key business processes. Dell has been a build-to-order online specialist for, like, thirty years.

So, I was disappointed that Dell’s DOA process involved so many steps across organizational and information silos that cry out for a rethink. I hope you’ll take this missive to heart. You know what to do about this.

No, It’s Not Just Dell and Lenovo …
HP has no laurels to sit on. Even Apple has disappointed me on more than one occasion. As this saga illustrates, the PC industry can do better on customer satisfaction.

The future of personal information technology is not one-size-fits all. It’s “buy what you need and want”. That’s going to take a holistic approach to online sales and service. You would have thought that would be old-hat going into 2016, but apparently not.

Follow @peterskastner on Twitter

Dell Inspiron 3000 Desktop

IRS Loses Lois Lerner Emails

The IRS told Congress yesterday that two years of emails on Tax Exempt Organizations department manager Lois Lerner’s desktop were irretrievably lost due to a hard drive crash in 2011. As this is a technology blog, how could this event happen?

The Internal Revenue Service has 90,000 employees working in a complex financial-services organization. Like its private-sector counterparts, the IRS has a sophisticated Information Technology organization because the IRS mission is implementing the tax laws of the United States. The IRS is the epitome of a paper-pushing organization, and by 2011 paper-pushing was done by email.

1. The IRS first installed Microsoft’s enterprise email product, Exchange in the data center and Outlook on client desktops in 1998, about the same time as many Fortune 500 organizations. By 2011, the IRS had over a decade of operational experience.

2. Hard drives are the weak-link in IT installations. These mechanical devices fail at the rate of about 5% a year. With 90,000 employees, that works out to an average of 4,500 a year or 22 per work day. The IRS IT staff is very familiar with the consequences of user-PC hard drive failures. Data center storage management is another leaf in the same book.

3. The IRS reported to Congress that senior executive Lerner’s hard drive failed, and nothing could be recovered from it. It was forensically tested. As a result, the IRS claims, there is no record of the emails that were sent or received from Ms. Lerner’s computer. The thousands of emails recovered to date were extracted from sender or recipient email lists within the IRS, not from Lerner’s files. There is no record of emails to other federal departments, or to other organizations or  personal emails.

4. The implication is that the Lerner email history only resided on her computer. There is no other IT explanation.  Yet Microsoft Exchange in the data center stores copies of all email chains on multiple hard drives on multiple, synchronized email servers. That’s the way all enterprise email systems have to work. So the facts as stated make no IT sense.

But let’s look at the implications of a strategy where the Lerner email history only resided on her computer and the hard drive failed completely so nothing could be recovered:

  • Where are the Lerner PC backups? With a 5% annual failure rate, industry-wide PC backup strategies are as old as centralized email. There should be Lerner PC backups made by IRS IT. Leave it up to the user to make backups? No organization the size of the IRS allows that for all the obvious reasons that come to mind, starting with it doesn’t work in practice.
  • How could Lois Lerner do her work? The hard drive was lost and there were no PC backups. Besides losing two years worth of emails, GS-15 department head Lerner had to also lose all the data of a digital business life: calendar; contacts; personnel notes; work-in-process plans, schedules, meeting notes, reviews, budget spreadsheets, official IRS rulings.
    It is inconceivable that a modern executive could be stripped of all her business data and not face-plant within a week. Could you? Not me. Nobody has paper backup for everything anymore. Your business smartphone backs up to your PC.
  • The Exchange servers log every email coming into and going out of the IRS. Did the whole set of IRS backup tapes fail in an unreported catastrophe? That primary (but undiscovered) failure would make the routine failure of Lerner’s PC unrecoverable.

I cannot think of an acceptable reason for the unexplained yet unrecoverable loss of the data on Lerner’s PC while following the usual practices every IT organization I have worked with over decades. Which leaves only two alternatives: a much clearer explanation from IRS IT professionals of how these events could happen; or something nefarious is going on.

Follow me on Twitter @peterskastner

The author’s experience with federal email and records management began with the Ronald Reagan White House in 1982.

Email Inbox

 

 

 

 

Enterprise Computing Jumps on the Supply-Demand Curve

The traditional enterprise computing server suppliers are in an ever-faster game of musical chairs with cloud computing competitors. Recent cloud price cuts will accelerate enterprise adoption of the cloud, to the economic detriment of IBM, HP, Oracle Sun.

Many IT executives sat down to a cup of coffee this morning with the Wall Street Journal opened to the Marketplace lede, “Price War Erupts in Cloud Services.” Cloud computing from the likes of Amazon, Google, and Microsoft is “changing the math for corporate executives who spend roughly $140 billion a year to buy computers, Internet cables, software and other gear for corporate-technology nerve centers.” This graphic begs the question,

50 Million Page View Web Site Costs“Gee, maybe my data-center computing model for the company needs a strategic re-think?” And while there’s a very active consulting business by the usual business-transformation consulting suspects, the no-cost answer is: yes, cloud computing is a valid model that most enterprises and applications should move to over time.

This blog post, though, is not about the nuances of cloud computing today. Rather, we need to take a look at how the supply-demand curve for enterprise computing must impact the traditional enterprise server business — hard. (And yes, I am breaking a vow made during Economics 101 to never mention economics in polite company).

Cloud computing is sucking the profits out of the traditional server business.

For over fifty years, in the case of IBM, the traditional server companies including HP and Sun sold big iron, proprietary operating software and storage, and lots of services at high margins. In the past two decades, Intel’s mass-market silicon evolved into the Xeon family that took away a large percentage of that proprietary “big iron”. Yet the Intel specialist firms such as NCR and Sequent never could beat the Big Three server suppliers, who took on Xeon-based server lines of their own.

Cloud computing is sucking the profits out of the traditional server business. IBM is selling its Xeon business to Lenovo, and is likely to considerably reduce its hardware business. Oracle’s Sun business looks like a cash cow to this writer, with little innovation coming out of R&D. HP is in denial.

All the traditional server companies have cloud offerings, of course. But only IBM has jettisoned its own servers in favor of the bare-metal, do-it-yourself offerings from Amazon, Google, and lately Microsoft.

Price-war-driven lower cloud computing prices will only generate more demand for cloud computing. Google, and Microsoft have other businesses that are very profitable; these two can run their cloud offerings lean and mean. (Amazon makes up tiny margins with huge volume). To recall that Economics 101 chart:

Supply-Demand Curve

The strategic issue for IT executives (and traditional-supplier investors) is what happens over the next five years as lower server profits hollow out their traditional supplier’s ability to innovate and deliver affordable hardware and software? Expect less support and examine your application software stacks; you’ll want to make migration to a cloud implementation possible and economical. The book isn’t even written on cloud operations, backup, recovery, performance and other now well-understood issues in your existing data centers.

Meanwhile, what are your users up to? Like PCs sprouted without IT blessings a generation ago, cost-conscious (or IT schedule averse) users are likely playing with the cloud using your enterprise data. Secure? Regulatory requirements met? Lots to think about.

Follow me on Twitter @PeterSKastner

Microsoft: Wrong Strategy, Right Implementation

Last fall, then Microsoft CEO Steve Ballmer announced the company’s new strategy as the “devices and services” company. I choked on this and remained silent because after all, Ballmer was on the way to retirement and the company was clearly on a road to change. I’m not a heckler.

However, let’s look at the strategy on the surface. First, Microsoft is not “the devices company”. They get credit for the xBox game consoles, mass-market mice and keyboards, and …. nothing more. The Microsoft-developed tablets and phones over the years have made hardly a dent in their respective markets. The assets and knowledge base of the Nokia acquisition aren’t likely to move the dial much either. My fellow analysts all agree on this state of reality.

Likewise, Microsoft’s overall impact on IT services is minuscule in the case of enterprise IT, and approximately non-existent in the case of consumers. You don’t need a focus group to determine that Microsoft is not top-of-mind for computer services. Therefore, I conclude the Microsoft as the “devices and services company” is a failure waiting to happen. The reality does not match the words.

Nevertheless, I applaud what Microsoft has been doing of late in making its familiar technology available on the real devices people own and use. A couple of weeks ago, the Office Suite became free apps for the Apple iPad. This morning, I loaded Word into Google Chrome on my Mac — and later I’ll put it on a Chromebook. In the devices space, Google (Android) and Apple (iPad and iPhone) are Microsoft’s arch enemies.

Enemies or not, I am paying nothing for the Microsoft apps on Chrome. I’m also paying nothing to store my documents on Microsoft’s OneDrive cloud storage. Free lunch on the Internet is good. Of course there’s a caveat, which is that my docs can only be stored in Microsoft’s OneDrive cloud. But that’s a free-market tradeoff that I and many consumers will be willing to make.

If Microsoft keeps implementing an “any device” strategy like the iPad/Chrome offer described above, they’ll do well and buff some tarnish off the brand. And if the company gets around to describing its strategy as “we are the best applications for everyday use by business and consumers on any device”, they might get more applause — and attention. Follow me on Twitter @PeterSKastner

Word for Chrome

“My ISP is a Solar-Powered Drone.”

Google, the ad-driven search giant, and Facebook, the social connections giant, are fighting over airplane drone technology companies. What’s that all about?

Solar-powered drones would, when they’re ready for mass-market in the next five years, be able to fly for weeks or months. They can take 2D and 3D photos resulting in better and more up-to-date maps. And they could serve as aerial Internet connections. It’s the latter that got my attention because it threatens the status quo in developed nations and opens new markets in developing nations.

Aerial Internet Drones (AIDs) suggest a breakout technology that solves — or at least remediates — the “wireless everywhere” mantra of the past decade. In developed countries such as the United States, intractable wireless problems include inadequate wireless bandwidth in high device areas (e.g., mid-town New York) necessitating more cell towers and greater slices of the electromagnetic spectrum. Moreover, “poor wireless coverage meets not-in-my-neighborhood” and inadequate capital make it politically and economically difficult to add enough cell towers to guarantee wireless broadband such as LTE to build a superior wireless broadband network in suburban and rural areas.

In underdeveloped geographies, which represent attractive new markets for the global technology and wireless companies, inexpensive and inadequate mobile broadband infrastructure creates a chicken-and-the-egg problem.

So, the vision to solve both developing and developed wireless broadband demand is to put up a global network of drones that serve as radio relays for wireless Internet connections. AIDs would be a new form of Internet router, loitering around a more-or-less fixed point in the sky.

At the right altitude, an AID has better line-of-sight than a cell tower located over the hill. The AID theoretically offers greater geographic coverage and often better signal quality than today’s cell tower networks. At a cost of less than $10 million per equipped AID, my envelope calculations suggest AID network costs compare favorably with cell towers for comparable geographic coverage.

In developing areas such as Africa, an AID network is a solution to creating metro- and rural-area Internet wireless infrastructure rapidly and without the difficulties of building land-line-connected cell towers.

Cellphone networks connect cell towers with land line connections to each other and to an Internet wired backhaul. An AID network needs to connect wirelessly to a) client cellphones and the Internet of Things and b) to a radio ground-station connected to an Internet wired backhaul. The radio ground-station is the crux of the difficulties I foresee.

The ground-station requires radio spectrum to communicate up to and down from the AID network. It represents a new demand on the over-burdened and highly political use of the electromagnetic spectrum. Where does the spectrum come from, whose ox is gored, and how are the skids greased?  Think lobbying.

Moreover, the incumbent cable and wireless ISPs (i.e., Comcast, Verizon, AT&T, Sprint, Dish, et al) are not likely to give up their near monopolies on Internet access by devices, homes, and businesses without a knockdown, drag-out political fight followed by years of litigation.

Add citizen privacy related to drone picture taking to this highly volatile Internet-industrial-complex wireless food fight and you can expect great spectator sport. Although in developing countries, the issue will be described as “drone spying by the NSA”.

Like many, I would greatly appreciate and even pay more for better wireless coverage and higher wireless device bandwidth. First, Google and Facebook have to solve the real technology problems of getting the AIDs into the sky. Second, they have to muscle a (much needed) rethink of wireless spectrum use and the roles of future ISPs through the political sausage factory, and nail down the new spectrum they need. Combined, this is a heavy lift.

So, with a sigh of regret, I suspect it will be quite a while before I can say “My ISP is a Solar-Powered Drone.”

Follow me on Twitter @PeterSKastner.

solar drone

Titan Aerospace/Associated Press